Exam multivariable analysis Jan 2021

Exercise 1

- a. For $L \in \text{Hom}(V, W)$ and $w \in W$ define $f : V \to W$ by f(v) = L(v) + w. Use the definition of derivative to determine f'(p) for any $p \in P$.
- b. Take $V = \mathbb{R}^2$ and $W = \mathbb{R}$ and f as in part a). Use the properties of Theorem 2.1.1 to find an expression for H'(p)(v) in terms of L, f, p, v and \sin, \cos , where $H : \mathbb{R}^2 \to \mathbb{R}^2$ is given by $H(p) = \sin\left(f\left(\sin(f(p)), \sin(f(p))\right)\right)$. You may use $\sin' = \cos$ without proof.

Exercise 2 This question is about the inverse function theorem (Theorem 3.2.1 in the notes) and its proof.

- a. Give an example of $f: P \to V$ and a $z \in P$ satisfying the conditions of the theorem such that the set A cannot be taken to be equal to P.
- b. Explain what is meant in the second to last line of the proof "In the final limit we used..." by providing the missing details and explicitly prove the final equality $\lim_{h\to 0} \frac{Err(h)}{|h|} = 0$.

Exercise 3 The set of solutions to the system of two equations given below is called $S \subset \mathbb{R}^4$.

$$-xyz + 3z^3 - w^4 - 1 = 0$$
$$2xz - yw + x^3 - 2 = 0$$

- a. Find a basis for the tangent space $T_{s_0}S$ to the solution $s_0 = (1, 1, 1, 1)$.
- b. Use the implicit function theorem to show that close to the solution x = y = z = w = 1 the points of S can be written as C^1 functions of two out of the four variables.

Exercise 4

Suppose V is a vector space of dimension 2n and $\omega \in \Omega_1^n(V)$, where n > 5. For a fixed non-zero vector $w \in V$ consider the vector field $F: V \to V$ defined by F(v) = w. Also fix $p \in P$.

- a. Check that $\alpha : (-1, 1) \to V$ given by $\alpha(t) = tw + p$ is an integral curve of F through p and compute $\alpha^* \omega$.
- b. Take $\phi \in (\mathbb{R}^n)^*$ such that $|\phi(x)| < 1$ for all $x \in [0,1]^n$. Prove that if the *n*-cube $\gamma : [0,1]^n \to V$ satisfies $\gamma(x) = \alpha(\phi(x))$ for all $x \in [0,1]^n$ then $\int_{\gamma} \omega = 0$.

Exercise 5 For $\omega \in \Omega_1^2(\mathbb{R}^4)$ and γ a 2-cube given by $\gamma(s,t) = (\sin 2\pi s, \cos 2\pi t, \cos 2\pi s, \sin 2\pi t)$.

- a. Prove that $\int_{\gamma} \omega = 0$. using d $\omega = 0$
- b. Consider $\eta \in \Omega_1^2(\mathbb{R}^4)$ given by $\eta(x, y, z, w) = w\epsilon^1 \wedge \epsilon^2$ and express the pull-back $\gamma^*\eta$ in terms $ds \wedge dt$.

Exercise 6. Imagine a finite-dimensional vector space V and $s \in V$ and $\phi \in V^*$ such that $\phi(s) = 0$ and consider the shear map $S_{s,\phi} \in \text{Hom}(V, V)$.

a. Prove that if we define $\tilde{s} \in (V^*)^*$ by $\tilde{s}(f) = f(s)$ for any $f \in V^*$, then we have

$$(S_{s,\phi})^* = S_{\phi,\tilde{s}} \in \operatorname{Hom}(V^*, V^*)$$

b. Is it true that for all $M \in \Lambda^3 V$ we have $\Lambda^3 S_{s,\phi} M = M$? Prove or provide a counter-example.