Exam multivariable analysis Jan 2021

Exercise 1

a. For $L \in \operatorname{Hom}(V, W)$ and $w \in W$ define $f: V \rightarrow W$ by $f(v)=L(v)+w$. Use the definition of derivative to determine $f^{\prime}(p)$ for any $p \in P$.
b. Take $V=\mathbb{R}^{2}$ and $W=\mathbb{R}$ and f as in part a). Use the properties of Theorem 2.1.1 to find an expression for $H^{\prime}(p)(v)$ in terms of L, f, p, v and \sin, cos, where $H: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given by $H(p)=\sin (f(\sin (f(p)), \sin (f(p))))$. You may use $\sin ^{\prime}=\cos$ without proof.
Exercise 2 This question is about the inverse function theorem (Theorem 3.2.1 in the notes) and its proof.
a. Give an example of $f: P \rightarrow V$ and a $z \in P$ satisfying the conditions of the theorem such that the set A cannot be taken to be equal to P.
b. Explain what is meant in the second to last line of the proof "In the final limit we used..." by providing the missing details and explicitly prove the final equality $\lim _{h \rightarrow 0} \frac{\operatorname{Err}(h)}{|h|}=0$.
Exercise 3 The set of solutions to the system of two equations given below is called $S \subset \mathbb{R}^{4}$.

$$
\begin{aligned}
-x y z+3 z^{3}-w^{4}-1 & =0 \\
2 x z-y w+x^{3}-2 & =0
\end{aligned}
$$

a. Find a basis for the tangent space $T_{s_{0}} S$ to the solution $s_{0}=(1,1,1,1)$.
b. Use the implicit function theorem to show that close to the solution $x=y=z=w=1$ the points of S can be written as C^{1} functions of two out of the four variables.

Exercise 4

Suppose V is a vector space of dimension $2 n$ and $\omega \in \Omega_{1}^{n}(V)$, where $n>5$. For a fixed non-zero vector $w \in V$ consider the vector field $F: V \rightarrow V$ defined by $F(v)=w$. Also fix $p \in P$.
a. Check that $\alpha:(-1,1) \rightarrow V$ given by $\alpha(t)=t w+p$ is an integral curve of F through p and compute $\alpha^{*} \omega$.
b. Take $\phi \in\left(\mathbb{R}^{n}\right)^{*}$ such that $|\phi(x)|<1$ for all $x \in[0,1]^{n}$. Prove that if the n-cube $\gamma:[0,1]^{n} \rightarrow V$ satisfies $\gamma(x)=\alpha(\phi(x))$ for all $x \in[0,1]^{n}$ then $\int_{\gamma} \omega=0$.
Exercise 5 For $\omega \in \Omega_{1}^{2}\left(\mathbb{R}^{4}\right)$ and γ a 2 -cube given by $\gamma(s, t)=(\sin 2 \pi s, \cos 2 \pi t, \cos 2 \pi s, \sin 2 \pi t)$.
a. Prove that $\int_{\gamma} \omega=0$. using $\mathrm{d} \omega=0$
b. Consider $\eta \in \Omega_{1}^{2}\left(\mathbb{R}^{4}\right)$ given by $\eta(x, y, z, w)=w \epsilon^{1} \wedge \epsilon^{2}$ and express the pull-back $\gamma^{*} \eta$ in terms $d s \wedge d t$.

Exercise 6. Imagine a finite-dimensional vector space V and $s \in V$ and $\phi \in V^{*}$ such that $\phi(s)=0$ and consider the shear map $S_{s, \phi} \in \operatorname{Hom}(V, V)$.
a. Prove that if we define $\tilde{s} \in\left(V^{*}\right)^{*}$ by $\tilde{s}(f)=f(s)$ for any $f \in V^{*}$, then we have

$$
\left(S_{s, \phi}\right)^{*}=S_{\phi, \tilde{s}} \in \operatorname{Hom}\left(V^{*}, V^{*}\right)
$$

b. Is it true that for all $M \in \Lambda^{3} V$ we have $\Lambda^{3} S_{s, \phi} M=M$? Prove or provide a counter-example.

